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Abstract

In 1999 Davis and Jedwab gave a direct construction of Golay complementary sequences
over Zon of length 2™. Recently Li and Chu found 1024 more quaternary Golay complementary
sequences of length 16, that cannot be obtained by the direct construction, using exhaustive
computer enumeration. It is shown how these sequences arise from interleaving and concate-
nation of two classes of Golay complementary sequences given as an example by Davis and
Jedwab. These examples spawn new Golay sequences over Z,n of length 2™ for all h > 2 and
m > 4.
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1 Introduction

Let a = (ag,a1,...,an,—1) be a sequence of length n and characteristic H, that is, each entry
a; € Zy. Let & = exp(2mry/—1/H), and define the aperiodic autocorrelation of a at displacement u
by

n u

—1—
Calu) = ) &t
1=0

A Golay pair, or pair of complementary sequences, is a pair (a,b) of sequences with the property
that their out-of-phase autocorrelations sum to zero, that is, Cq(u) + Cp(u) = 0, 0 < u < n.
Each sequence of a pair is called a Golay complementary sequence, or Golay sequence. We call a
sequence binary, quaternary, or octary, respectively, if H = 2,4, or 8. Sequences with H > 2 are
also called polyphase. Note that it is also common to consider the sequence of complex modulated
values (£%0,&% ... £%~1). In particular, a binary sequence can be regarded as a sequence of +1
and —1 entries, whereas we consider binary sequences of 0 and 1 entries. We will denote the all-1
sequence (whose length is to be understood from the context) by 1.

Complementary binary sequences were introduced by Marcel Golay [Gol 61] to study problems
in infrared multislit spectrometry. Both binary and polyphase Golay sequences have since found
many applications, such as in optical time-domain reflectometry or orthogonal frequency-division
multiplexing (OFDM). They are known to guarantee a low peak-to-average power ratio in OFDM
[Pop 91]. In [DJ 99] the then-known Golay sequences of length 2™ and characteristic H = 2",
m > 1, h > 1, were shown to occur as cosets of the first-order Reed-Muller code within the
second-order Reed-Muller code (appropriately defined for A > 1). Hence these Golay sequences
also provide a good error correction capability. For a survey on Golay complementary sequences,
see [PPT 03]. Recently Li and Chu [LC 05] found 1024 new quaternary Golay sequences of length
16 that do not occur as a single coset of the first-order Reed-Muller code in the second-order
Reed-Muller code.
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2 Construction of Golay Pairs

Golay introduced several recursive constructions for binary Golay pairs, such as concatenation and
interleaving. He also gave an explicit construction for length 2" using generalized boolean sums
[Gol 61]. Golay later noted [Gol 77] that this explicit construction gives 2™m! distinct binary
complementary sequences. Budisin [Bud 90] introduced an iterative construction for (polyphase)
Golay pairs. This construction contains Golay’s concatentation and interleaving of binary sequences
as a particular case. Davis and Jedwab [DJ 99] gave an explicit construction of (m!/2) - 2/(m+1)
Golay sequences of characteristic H = 2" and length 2. Paterson [Pat 00] showed that the set of
Golay sequences of length 2™ over Zsn obtainable by Golay’s explicit construction for A = 1 and
those obtainable by BudiSin’s iterative construction for h > 1 coincide with the sequences described
in [DJ 99]. Furthermore, he generalized [DJ 99] to the case H even.

2.1 Concatenation and Interleaving

Let a = (ag,a1,...,an,—1) and b = (bg,b1,...,bk_1) be sequences of length n and k, respectively.
The concatenation of a and b is the sequence

a;b=(agp,ai,...,an-1,b0,b1,...,br_1)
of length n + k. If n = k, then we construct the interleaving of a and b as the sequence
int(av b) = (a07 bOv ai, bla ceey On—1, bnfl)

of length 2n. Golay showed that if @ and b form a binary Golay pair, then a ;b and a; (b + 1) also
form a binary Golay pair [Gol 61, General Property 9]. Similarly, int(a,b) and int(a,b + 1) form
a binary Golay pair [Gol 61, General Property 10].

Budisin [Bud 90] generalized concatenation and interleaving by allowing gaps in intermediate
steps of an iterative construction. He noted that some Golay sequences generated by this method
cannot be generated by Golay’s recursive methods, meaning concatenation and interleaving. An
example is the binary Golay sequence

a=(0,0,0,1,0,0,0,1,0,1,0,0,1,0,1,1).

The sequence a is neither the concatenation nor the interleaving of any binary Golay pair.

The recursive construction of concatenation and interleaving generalizes to other (even) char-
acteristics. Suppose a and b are a Golay pair of characteristic H and length n. If H is even, it is
straightforward to show that a ;b and a; (b + % - 1), as well as int(a, b) and int(a, b+ % -1), also
form a Golay pair of characteristic H and length 2n.

2.2 Cosets of Sequences

We would like to investigate under what circumstances adding a sequence ¢ to each sequence of a
Golay pair (a,b) creates another (possibly new) Golay pair (a + ¢,b + ¢). We begin with a small
observation that does not seem to have appeared in print.

Lemma 1. Let a and ¢ be sequences of length n over Zy, where ¢ = (¢, +c¢,2c +¢, ..., (n—1)d+c¢),
¢, € Zy. Let a+ ¢ be the sequence obtained from a and ¢ by elementwise addition (mod H).
Then Cqye(u) = €74 Cy(u).
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So we may add a constant sequence ¢ = c¢- 1, ¢ € Zj, to a sequence a, and a + ¢ will have the
same autocorrelation function as a. This fact is well-known. We may also add a multiple of the
sequence (0,1,2,3,4,...) to a sequence a and to another sequence b. Generally, the new sequences
will not have the same autocorrelation functions as a and b, respectively. However, Lemma 1 can
be used to construct new Golay pairs from a given one. If a and b form a Golay pair, we can add
a sequence ¢ to obtain new sequences a + ¢ and b + ¢, where ¢ is as above with ¢, € Zg. Then,
by Lemma 1, we have Caye(u) = €74 Cq(u) and Chpre(u) = £ Cp(u) = —E 4 Cq(u).

Corollary 2. Let a, b, and ¢ be sequences of length n over Zy, where (a,b) is a Golay pair and
c=(c,d +c¢,2d +e,....,(n—1) +¢), ¢,d € Zy. Then (a+ ¢,b+ c) is a Golay pair.

For binary sequences, this amounts to General Property 5 of [Gol 61], which states that adding
the alternating sequence (0,1,0,1,...) to each sequence of a Golay pair creates another Golay pair.
For quaternary sequences, it shows that adding a multiple of (0,1,2,3,0,1,2,...) to each sequence
of a (quaternary) Golay pair creates another Golay pair.

In [LC 05] a two-step process of reducing sequences to “d”- and “dd”-sequences was introduced
(without proof), which helped reduce the search space. It is essentially an application of Lemma 1.

There have been several recursive, iterative, and direct constructions of Golay pairs over even
characteristic H [Gol 61], [Bud 90], [DJ 99|, [Pat 00]. By design, all these constructions create
Golay pairs (a, b) such that b — a is a sequence that takes only two values, ¢ and % + /¢ (mod H),
for a suitable £ € Zy. In such a case, b—a — £ 1 is a {0, £ }-sequence. Let c= Z(b—a — £+ 1).
We will see that we can form more Golay pairs by adding a multiple of ¢ to the Golay sequences
a and b.

Lemma 3. Let ¢ be a {0,1} (that is, binary) sequence, and suppose that (a,a + %04— (-1)is a
Golay pair over Zyg, H even. Then a+ k- c and a + (g + k)e+ £ -1 also form a pair of Golay
complementary sequences for any k € Zy.

Proof. By Corollary 2 we may assume ¢ = 0. Let u be fixed. Let I (u) be the set of indices i such
that ¢; = 1 and ¢;4,, = 0. Thus, for i € I (u), (a+ke); = a;+k and (a+kc)ity = @ity Similarly,
let I_(u) denote the set of indices i such that ¢; = 0 and ¢;4,, = 1. Hence, for any i € I_(u),
(a + kc); = a; and (@ + ke)iyy = @jpy + k. If ¢; = ¢jpyy then (a + ke); — (@ + k€)ipy = a; — Gjgy-
Therefore

Catke(u) = Ca(u)

_ Z &'ai_ai+u_|_ Z gai—(ai+u+k)

i€l (u) iel_(u)
_ Z §a¢*a¢+u + Z g(aﬂrk)fa“u
Z'€I+(u) i€I+(u)
= Ca(u) + (S—k — 1) Z é'ai_ai+u + <£k _ 1) Z gai_aiJru_
i€l (u) i€l (u)



Recall that 5% = —1. Now the same calculations with Ca+(g+k)c(u) show
2

Ca+(%+k)c(u) = CaJrgC(u)
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by assumption. This completes the proof. B

Note that, even though by design the constructions [Gol 61], [Bud 90], [DJ 99], [Pat 00] create
Golay pairs (a,b) such that b — a is an {¢,¢ + %}—Sequence for some ¢ € Zy, it is not true that
b — a is a two-value sequence for every Golay pair (a,b) (cf. Section 3, (6)). As it turns out, it is
actually Golay pairs (a, b) such that b — a is a sequence with more than two values that will allow
us to explain the newly discovered Golay sequences from [LC 05].

Corollary 2 and Lemma 3 naturally organize Golay pairs in sets. That is, we consider sets of
Golay pairs where each member (a, b) of such a set can be obtained from any other member (a’,b’)
by adding a suitable combination of sequences in accordance with Corollary 2 and Lemma 3. Our
main motivation for this approach is to obtain a starting point for the comparison of the properties
of the known Golay sequences with the properties of the 1024 new sequences. We will discuss these
questions in more detail in Sections 4 and 5.

The next result is well-known for binary sequences, but it has not often been applied to
polyphase sequences. Strictly speaking, it does not involve adding a sequence c to the sequences
of a Golay pair. However, it is a general way of constructing a Golay pair from a given Golay pair,
and we would like to include it for completeness.

Lemma 4. Let (a,b) be a Golay pair and let a* = (—ap—1, —an-2,...,—ag). Then Cq(u) = Cqx(u)
for all 0 < u < n and thus, (a*,b) is a Golay pair.
Proof.
n—1—u
Car(u) = Z £ %n—1=i=(=0n—1)—(i+u))
i=0
n—1—u
— ga(nfl)f(i+u)_a(n71)fi
=0
n—1—u
= faj*ajﬂLu
§=0
= Cq(u)
where j = (n—1) — (i +u). O
If a is a binary sequence, then a* = (ap—1,ap—2,...,a9) since —1 = 1 (mod 2) and —0 = 0

(mod 2). Thus, if (a,b) is a binary Golay pair, then ((an—1,an—2,...,a0),b) is also a binary
Golay pair [Gol 61, General Property 3]. In general, this is not true for polyphase Golay pairs.
However, we will see in the next subsection how Golay pairs (a,b), (a*,b), (a,b*), and (a*,b*)
occur naturally in the construction in [DJ 99].



Henceforth we will restrict our attention to the case H = 2", h > 1, and n = 2", m > 1. In
this setting we can describe sequences algebraically.

2.3 Boolean Functions

When H = 2" and n = 2™, sequences a € Zg;n can be described using generalized boolean
functions.
A generalized boolean function is a function f : Z5' — Zon, h > 1. Consider the test functions
fi(x1, e, ..., xm) = x;. They give rise to 2™ monomials
L,
L1, X2, -+, Tm,

T1T2, 123, . - ., Tn—1Tm, (1)

xle...xm

Any (generalized) boolean function f : Z5* — Zyn can be expressed uniquely as a linear combination
over Zgn of these monomials (1). The resulting polynomial is called the algebraic normal form
of f. With f we associate a sequence f of length 2" by listing the values f(z1,%2,...,2Zy) as
(x1,2,...,Tn) ranges over Zy' lexicographically. For example, if m = 3 and h = 2 then

@3 = (0,1,0,1,0,1,0,1)
2x5 = (0,0,2,2,0,0,2,2)
2@y + x5 = (0,1,2,3,0,1,2,3).

Here x> and x3 denote the sequences corresponding to the functions xo and x3, respectively. In
particular, the sequence

m
c=c- 1+C’Z2m*iwi
i=1
=c-1+ C,(mm + 2$m71 + -+ 2h_1mm—h+1)

is the sequence used in Lemma 1.

Theorem ([DJ 99, Corollary 5]). Let

m—1 m
h—
f=2" 1Y Tty + D i,
k=1 k=1
where T is a permutation of the symbols {1,2,...,m} and cx € Zon. Then any sequence in the set

A - {f+c 1,_f+2h71(m7r(1) +$7r(m)) +c-1 | cc ZQh}
forms a Golay complementary pair over Zqn of length 2™ with any sequence in the set
B = {f+2h_1w7r(l) +Cl . 17f+2h—1m7r(m) +C, ‘1 | C/ e ZQh}.

We remark that either of the two sequences f +c¢-1 and f + 2h_1(azw(1) + Tr(m)) + ¢+ 1 can
be formally obtained from one another (up to a constant ¢’) by mapping each z; — —(1 — ;),
1 <4 <'m, in the definition of f. Thus, (up to a constant) they are negative reverses of each other



and have the same autocorrelation function (Lemma 4). The same is true for the two sequences
f+ 2h*1xﬁ(1) +c -1 and f+ 2h*1:1;,,(m) +c 1.

For instance, for the three quaternary sequences b = 2(zx1x2 +z123) + 21, b’ = 2(x120 + T123) +
x1 + 2x9 4+ 223 + 3, and b = 2(z129 + x123) + 321 + 222 + 223 + 1 of length 8 (where we have
identified the functions with their associated sequences), we have

b=(0,0,0,0,1,3,3,1),
b =(3,1,1,3,0,0,0,0),
v =(1,3,3,1,0,0,0,0).

These sequences are of the form given in [DJ 99, Corollary 5] with m = 3, h = 2, and = = (1, 2).
We see that b” is the reverse of b, b’ = b + 2(2r1) + Tr(3)) + 3, and b’ = b* (that is, b; = —br_;
(mod 4)). We calculate the autocorrelation function for each of these sequences.

(Cp(u) |0<u<T7)=(82—vV-1,0,24+v—1,0,v/—1,0, —/—1),
(Cy(u) |0<u<T7)=(82—-v-1,0,2+v—1,0,v/—1,0, —/—1),
(Cor(u) |0 <u<T7)=(82++v~-1,0,2—v~1,0,—v/~1,0,v/~1).

Clearly, the autocorrelation function of b” does not coincide with that of b (see also the remark
following Lemma 4).

3 Explaining the New Examples

With h = 2 and m = 3, define the sets

A ={2(z122 + 2x3) +
2(z1x9 + zow3) + 2x1 +2x3+c|c€Zy}
{2(z122 + xo23) + 221 + ¢,
2(x1xe + xow3) + 223+ ¢ | ¢ € Zy}
)
)
)
)

(

(

B (

(
{2(z122 + 2123) + 322 + 23 + )

(

(

(

2(x1xe + x123) + X2+ 3w3 + ¢ | € € Zy}
{2(z122 + x123) + T2 + 3 + €,
2(z1xe + z123) + 32 + 323 + ¢ | € € Ly},

in which we again identify the functions with their associated sequences. Then the sequences in
A, B, A', and B’ are quaternary sequences of length eight. Since they are of the form given in
[DJ 99, Corollary 5], any of the eight sequences in A forms a quaternary Golay complementary
pair with any of the sequences in B. Also, any of the sequences in A’ forms a Golay pair with any
of the sequences in B’. In particular, all sequences in A share the same autocorrelation function.
Similarly, all sequences in A’ have the same autocorrelation function. Let a € A and a’ € A’.
Direct calculations show that

(Ca(u)|0<u<T7)=(8,-1,0,3,0,1,0,1)
and

(Car(u) | 0<u<7)=(8-1,0,3,0,1,0,1).



Hence Cq(u) = Cy(u) for any a € A and @’ € A’, 0 < u < 7. Consequently, Cp(u) = Cy (1)
for any b € Band b € B, 0 < u < 7. As noted in [DJ 99, p. 2401], this “cross-over” of the
corresponding autocorrelation function leads to more Golay pairs than one would expect from the
construction. For instance, take any sequence a from A, and pair it with any sequence b from B’.
This gives a Golay pair (a,b’). So instead of 2 - 8% = 128 Golay pairs formed by pairs of sequences
from A x B and A’ x B’, we obtain (8 + 8)% = 256 Golay pairs formed by pairs of sequences from
(AUA") x (BUB').

We may form further examples by adding multiples of x3 + 2x5 to each sequence in A, B,
A’ and B’ (Corollary 2). This essentially creates cosets A+ ¢ - (@3 + 2x2), B+ ¢ - (3 + 2x2),
A+ - (x3+2x2), and B'+ - (x3+2x2), ¢ € Zy. However, note that {a+2(x3+2x2) | a € A} =B
and {b + 2(x3 + 2x2) | b € B} = A. Hence by adding multiples of x3 + 2x2 we obtain only the
original four sets (2), and the four sets A + (x5 + 2x3), B + (x3 + 2x2), A’ + (23 + 2x2), and
B’ + (x3 + 2x2). Exhaustive computer enumeration has confirmed that these two examples of four
sets are the only ones exhibiting a “cross-over” of the autocorrelation function of Golay sequences
of length 8 over Zg4.

The sequences in (2) can be used to construct sequences which cannot be obtained with [DJ 99,
Corollary 5]. For example, let a € A and b € B’ where

a= 2(3:1172 + x2$3) (3)
b= 2(1‘11‘2 + 1‘11‘3) + 9 + x3. (4)

Then
a;b=2r110m4 + 2212374 + 173 + T1T4 + 22073 + 22374 (5)

=(0,0,0,2,0,0,2,0,0,1,1,2,0,3,3,2).

Note that z; is a function from Zj to Z4 in (5), 1 < i < 4, whereas in (3) and (4) we have
T L — Ty, 1 <0 < 3.

The sequence a ;b forms a Golay pair with a;(b+2""1.1) = (a;b) + 221, and both Golay
sequences are not of the form given in [DJ 99, Corollary 5]. In fact, they correspond to entry #8
with ag = 0, dp = 0 and entry #5c with ag =0, dp = 0 in [LC 05, Table 1].

We remark that

b—a=2(x123 + xow3) + T2 + T3
=(0,1,1,0,0,3,1,2), (6)

so b — a is not a sequence taking just two values £ and £+ % (mod H), H = 4. This distinguishes
the Golay pair (a,b) € A x B’ from any Golay pair (a’,b') in A x B or A’ x B’. By design, the
latter is such that ' — a’ is a sequence taking only two values.

We will now show how these sequences (2) give rise to the 1024 Golay sequences found in
[LC 05]. Leta € Aandb e B',orac A'and b€ B. Then a;band a;(b+ 2" - 1) form a Golay
pair (Section 2.1). It can be easily verified that the algebraic normal form of each of these sequences
is a cubic polynomial. Hence, both Golay sequences are not covered by the construction in [D.J 99].
By Corollary 2, for each pair (a,b) from A x B’ or A’ x B we can construct four quaternary Golay
sequences (a;b) + c(x4 + 2x3) of length 16, ¢ € Z4. Thus, we obtain 2 - 64 - 4 = 512 quaternary
Golay sequences of length 16 which are not of the form in [DJ 99, Corollary 5]. All these sequences
are distinct, since equality of (a;b) + c¢(xy + 2x3) and (a’;b') + (x4 + 2x3), ¢, € Zy, occurs
exactly when

a+ c(x3 + 2x2) = a' + (x5 + 2x2)
b+ c(x3 + 222) = b + (x5 + 222)



as (x3 + 2xa) ; (X3 + 2@2) = @4 + 2x3. Now notice that the difference of any two distinct elements
of AU A’ is not a non-zero multiple of x3 + 2x9. The same is true for B U B’.

The remaining 512 of the new 1024 Golay complementary sequences in [LC 05] can be con-
structed by interleaving (rather than concatenating) sequences from A with sequences from B’,
sequences from A’ with sequences from B, sequences from A + (x3 + 2x2) with sequences from
B’ + (x3 + 2x3), or sequences from A’ + (x5 + 2x2) with sequences from B + (x3 + 2x2). For
instance, taking a and b as in (3) and (4), we see

int(a, b) = 2z12314 + 2002374 + 221272 + 2x2x3 + ToTy + T3T4 (7)
=(0,0,0,1,0,1,2,2,0,0,0,3,2,3,0,2)

which corresponds to entry #3 with ag = 0, dg = 0 in [LC 05, Table 1]. The sequence int(a,b)
forms a Golay pair with int(a, (b+2""!-1)) and also with int((b+2"~!-1)", a*) (Lemma 4) where

(b+2" 1. 1) =b 42"
= 2(z1x9 + x123) + 322 + 373 + 2,
a* = 2(x1x9 + xows) + 221 + 213.

Similarly to concatenation, we may choose a pair (a,b) from A x B’ or A’ x B, and construct
two Golay sequences int(a,b) + c¢(x4 + 2x3), ¢ € Z3. We can construct two more sequences by
choosing (a, b) from (A + x3 + 2x3) X (B’ + @3+ 2x2) or (A’ + x5+ 2x9) X (B + x3 + 2x2). Again,
we obtain 2-64 -2 -2 = 512 quaternary Golay sequences of length 16 which are different from the
sequences described in [DJ 99, Corollary 5]. As before, all these sequences are distinct. Finally,
we observe that the algebraic normal form of sequences obtained by interleaving has cubic terms
that are distinct from those in the sequences obtained by concatenation (cf. (7) and (5)). Hence
the 1024 sequences described above are all distinct.

The sequences in (2) can be naturally lifted to Zgz +x, k > 1, such that the corresponding
sequences of complex modulated values do not change. For instance, the quaternary sequence b in
(4) has a representation

b=(0,1,1,2,0,3,3,2)

which corresponds to (€0, &1, &1, €2 €0,¢3,¢3 ¢2), where € = v/—1. As an octary sequence, b can be
written as (0,2,2,4,0,6,6,4), which corresponds to

(VE VEVENE VE VEVE VE)
= (€%,61,¢1,62,¢%,6,6%,¢7)

that is, we multiply each entry of the sequence b by 2. In other words, we can write the quaternary
sequence b = 2(x129 + x123) + 2 + 23 (4) as an octary sequence 2b, and generally as 2Fb over
Zg2+k. Since the complex modulated values of the lifted sequences do not change, the quaternary
sequence b has the same autocorrelation function as 2kb over Zoz+k, which in turn has the same
autocorrelation function as 2¥b + ¢ - 1, ¢ € Zg24r (Lemma 1). Hence the lifting of b to Z§2+k
belongs to a set {2b+c-1 | b € B, ¢ € Zozsr} of size 8 - 2% of Golay sequences with the same
autocorrelation function. We call this set the lifting of B’. Hence, by lifting the sets A, B, A’, and
B’ to Z§2 1, we can construct Golay complementary sequences of length 16 and any characteristic
H = 22t%_ We remark that the algebraic normal form of these Golay sequences is always a cubic
polynomial. Hence, by applying concatenation or interleaving we will be able to produce (new)
Golay sequences of any length 2™ m > 4.

Corollary 5. For every m > 4, h > 2, there are Golay sequences over Zqn of length 2™ which are
not of the form in [DJ 99, Corollary 5].



4 Number of Sequences Spawned By a Pair

One of the drawbacks of the application of Golay sequences to OFDM is the achievable code rate.
Until the publication of [LC 05], the number of known Golay sequences of length 2 over Z,n was
(m!/2) - 2Mm+1) | This results in a code rate of (w+ h(m +1))/(2™h) [DJ 99], where w is such that
2" is the largest integer power of 2 no greater than m!/2. This rate drops quickly as m increases.
More Golay sequences give a higher code rate.

In Section 3 we have shown that the new 1024 Golay sequences [LC 05] are constructed by
concatenation or interleaving of Golay pairs in Z§. If (a, b) is a Golay pair of the form in [DJ 99,
Corollary 5], then both a;b and int(a,b) are of the form in [DJ 99, Corollary 5]. Hence, to
obtain new Golay sequences by concatenation or interleaving of a Golay pair (a,b), we need a
Golay pair which is not a Golay pair as constructed in [DJ 99, Corollary 5] (but each Golay
sequence a, b may be of that form). If we consider all Golay pairs (a,b) of the form in [DJ 99,
Corollary 5], then the Golay sequences obtained by this construction are naturally organized in
sets A={a+c-1,a"+c-1|c€Zy}and B={b+c-1,b"+c-1|c € Zyn}. Hence, as
shown in Section 3, new Golay sequences may be found if there exist such (distinct) sets A, B, A’,
and B’ for which every (a,b) € A x B and every (a’,b') € A’ x B’ is a Golay pair as in [DJ 99,
Corollary 5], and Cg(u) = Cq/(u), 0 < u < n, for some a € A and a’ € A’. Since the existence of
such sequences a and a’ is not implied by the construction, we speak of a “cross-over” effect of the
autocorrelation function of Golay sequences. Understanding how wide-spread this phenomenon is
helps find new Golay sequences.

We have checked by computer whether the cross-over effect occurs for Golay sequences that
are constructed with the constructions in [Bud 90], [DJ 99]. For h = 3,4 we verified that the only
examples of length 8 and characteristic 2" are those to be expected as liftings of the sets (2). We
also considered binary, quaternary, and octary sequences of the form in [DJ 99| for each of the
lengths 8, 16, 32, and 64. There are no new examples of this behavior. Also, we found that for
every quaternary Golay sequence a of length 16 (including the sequences found in [LC 05]) there
are exactly 2 -4 quaternary Golay sequences with the same autocorrelation function (including a).
Hence, in this case the set of Golay sequences with the same autocorrelation function as a is just
A={a+c-1,a"+c-1|c € Zys}, which is of size 8. Thus, the cross-over of autocorrelation
functions does not seem to propagate.

So currently (2) is the only starting point for the construction of new Golay sequences of
length 2™ over Zgn, m > 4, h > 2. Under the assumption that there is no further cross-over, it
is interesting to know how many new quaternary Golay sequences arise from just concatenation
and interleaving of the sequences in (2). For length 16 these are exactly the sequences found in
[LC 05] (Section 3). Note that these sequences form 8 - 1024 Golay pairs, since each sequence a
belongs to a set A of size 8 of Golay sequences with the same autocorrelation function. By applying
concatenation and interleaving to these Golay pairs, we would expect to obtain 16-1024 quaternary
Golay sequences of length 32. In fact, computer search shows that only 14-1024 of these sequences
are distinct. They form 8- 14 - 1024 = 112 - 1024 Golay pairs. By applying concatenation and
interleaving to these 112 - 1024 distinct Golay pairs, we would then expect to obtain 224 - 1024
new Golay sequences of length 64. However, only 192 - 1024 of them were distinct. (We then
checked by computer whether there is a cross-over of the autocorrelation function within the newly
constructed quaternary sequences of length 16 and 32, and whether there is a cross-over between
these sequences and sequences constructed as in [DJ 99]. In both cases, we found there is no new
example of a cross-over.)

This illustrates one of the difficulties when counting the number of (new) sequences that can
be obtained just from concatenation or interleaving. Some Golay sequences may be constructed in



more than one way. This fact is not new. For example, consider the binary Golay sequence

a = r1r2 + Tox3
= (0,0,0,1,0,0,1,0)

of length 8. It can be obtained as concatenation of a Golay pair

a = (x172) ; (v122 + 1)
= (0,0,0,1);(0,0,1,0)

or as interleaving of a (different) Golay pair

a = int((z122), (x122 + x2))
— int((0,0,0,1), (0,1,0,0)).

Moreover, as Budisin noted in [Bud 90], not all Golay sequences can be constructed using just
concatenation and interleaving (cf. Section 2.1). In [Bud 90] and [DJ 99] it was possible to count
the number of distinct Golay sequences by different means. If we assume that there is no more
cross-over of the autocorrelation function for Golay sequences of length 8 and characteristic 2",
h > 2, then we are able to get an accurate count of sequences (of length 16) that can be obtained
from concatenation or interleaving of liftings to Zgh of the sets in (2) (and their cosets by &3+ 2x2).
In that case we have exactly 2-2"-(2"*1)2 Golay pairs (a, b) and (b, a) from (A+c(xz3+2x2)) x (B'+
c(xs +2x2)), ¢ € Zyn, which are not of the form in [DJ 99, Corollary 5]. Note that the set of these
Golay pairs contains the Golay pairs (a’,b’) and (b',a’) from (A’ +c(x3+2x2)) X (B+c(x3+2229)),
¢ € Zgn, since A + 2" Y(x3 + 222) = B and B’ + 2" (x5 + 2x2) = A’. Therefore, by applying
concatenation or interleaving we obtain 2 - 2 - 2" . (2/+1)2 = 2344 new Golay sequences. Similar
to the argument in Section 3, they are distinct. However, in general we were not able to count the
number of Golay sequences spawned by an arbitrary Golay pair, nor even the number of Golay
sequences generated just by concatenation and interleaving of an arbitrary Golay pair.

5 A Question

Since the constructions in [Bud 90] and [DJ 99] give the same set of Golay sequences of length 2™
over Zqn, we will use the latter to illustrate an interesting property of these sequences. Let a be a
Golay sequence of length 2™ over Z,n constructed as in [DJ 99]. Let ¢ be a sequence of the same
length over Zyn associated with the function co+ ;- kg, cx € Zyn. By [DJ 99, Corollary 5], the
sequence a + ¢ also is a Golay sequence. So to any Golay sequence a obtainable by [DJ 99] we may
add any sequence ¢ constructed from a linear polynomial, and get a Golay sequence a + ¢. This is
much more than one would expect using just Corollary 2 and Lemma 3. Recall that Corollary 2
only guarantees Golay sequences if we add ¢ - 1 or co(@®y, + 2Tpm—1+ -+ + 2h_1wm_h+1), ¢ € Zon.
Lemma 3 gives Golay sequences if we add ¢3& (1) OF C4%r(m), €3, ¢4 € Zgn, to a Golay sequence of
the form in [DJ 99, Corollary 5].

In this sense, the Golay sequences in [LC 05] serve not only as an example of new sequences,
but they also give some hint on how much structure to expect from Golay sequences in general.
We verified by computer that the sequences given in Corollary 2 are the only sequences that can be
added to any quaternary Golay sequence of length 16 and still give a Golay sequence. Of course,
Lemma 3 and Lemma 4 hold, but they depend on the actual Golay pair (a,b). This raises the
following question: If in general we should not expect the 2(™+1) choices for ¢ arising from linear
polynomials, then what makes the Golay sequences in [DJ 99, Corollary 5|, which arise as cosets
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of certain codewords in the second order Reed-Muller code by the first-order Reed-Muller code,
fundamentally different? While one could simply observe that the recursive approach of [Bud 90|
to constructing the sequences in [DJ 99, Corollary 5] leads to the introduction of arbitrary linear
terms, we would like to know if there is a deeper structural explanation.

6 Conclusion

We have shown that the new Golay complementary sequences found in [LC 05] can be constructed
by concatenation or interleaving of appropriate quaternary Golay pairs. These Golay pairs have
been noticed before in [DJ 99]. However, it was only on reading [LC 05] that we realized how these
examples can be used to construct new Golay sequences.

With the benefit of hindsight we can find other clues as to the existence of these new Golay
sequences in prior work. In 1994 Holzmann and Kharaghani [HK 94] used computer search to
determine the number of ordered quaternary Golay pairs (a,b) of length 8 as 13 - 512 = 6656,
rather than the 12 - 512 later given by [DJ 99, Corollary 5]. Then in 2002 Craigen, Holzmann and
Kharaghani [CHK 02] found by computer search that the corresponding pair count for length 16
is 13 - 8192 = 106,496 rather than 12 - 8192, and pointed out the excess of the computer search
pair counts for lengths 8 and 16 over those in [DJ 99]. However the papers [HK 94] and [CHK 02]
do not analyze the structure of the identified Golay pairs beyond a classification into equivalence
classes (in [HK 94]), and crucially they do not count the number of quaternary Golay sequences.
As a result, [CHK 02] does not distinguish length 8 (for which there are additional quaternary
Golay pairs but no additional Golay sequences) from length 16 (for which there are both). Such a
distinction could have been a starting point for an earlier construction of the sequences reported
in [LC 05] and an explanation for their existence via the cross-over phenomenon.

Li and Chu [LC 05] noted that the sequences they found can be used to construct longer
(quaternary) sequences, and that new sequences for larger lengths and alphabets may exist. We
have shown how to construct a large class of previously unknown sequences for all lengths 2™,
m > 4 and all characteristics H = 2", h > 2.

We have shown that these new sequences exist because of a cross-over of the autocorrelation
function of certain Golay sequences. We believe this to be an interesting area of study in its own
right.

7 Note Added in Proof

Li and Kao [LK 05] have shown independently that the 1024 new Golay sequences of [LC 05]
can be constructed by concatenation or interleaving of certain length 8 quaternary Golay pairs,
classifying the resulting sequences into sets of 64 in each of 16 third-order cosets of the generalised
first-order Reed-Muller code of length 16. However [LK 05] does not explain the existence of these
new sequences as depending explicitly on a cross-over property of autocorrelation functions, nor
does it construct or count new Golay sequences at lengths other than 16 or over alphabets other
than Zy4.
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